Guide to the Nuclear Reactor
Not to be confused with the Stormdrive, an engine that runs on magic. THIS engine runs on pure science! This guide details how to operate the AGCNR Nuclear Reactor, (but we're just going to call it the Nuclear Reactor for simplicity's sake) and if you follow it to the letter, you should have a working reactor generating enough power for your vessel within less than 10 minutes. So let's get started!
Terminology
Before we begin, it's important you understand a few key words that are going to be repeated throughout this guide:
- Neutrons per generation (K): Rate of heat gain in the reactor.
- Moderator: Gasses that cause special effects inside the reactor.
- Power: How hot your reactor is versus a meltdown (%).
Generating Power
The Nuclear Reactor has two inputs: Moderator and Coolant. The first thing we're going to worry about is the coolant loop. Power is generated through a simple process: Uranium fuel rods are placed into the reactor which immediately starts the reaction, creating constant heat. Our coolant gas is pumped into the reactor, heats up to the heat of the reactor, and then carries said heat to a set of Turbines to generator additional power. After this is done, the gas finally enters a heat exchanger in space to cool down the gas for further use in the loop. The colder the gas you put into the loop, the faster the reactor cools down. Innately, it’s set up so that the temperature loss from coolant intake is balanced out against the heat generated by the fuel rods, represented by the controllable figure called K (Neutrons per generation). NOTE that the coolant gas can potentially retain heat and actually heat up the reactor, so, be certain to check the thermometers on the coolant loop often!
Starting up
Starting the Nuclear Reactor is easy. First, you’ll need to add your coolant of choice to the loop – you only need to do this once, as it will continually circulate around the pipes. Do this by wrenching a canister of your desired coolant onto the port on the cold side of the loop. Different gasses will have different effects as coolant, but it’s generally pretty simple:
Plasma is an exceptional coolant, and can absorb a lot of heat. This is the coolant we tend to use, though it is highly vulnerable to sabotage. Oxygen is a somewhat safer alternative than plasma, however it can still be sabotaged if you add plasma to the loop to cause a pipe fire.
CO2 is an extremely safe coolant, but it’s not hugely effective. It cannot catch fire which is a definite bonus.
Of course the coolant is only
- Turn on your tablet, download nuclear reactor monitoring, keep it on in your pocket.
- Insert coolant into the coolant loop (Plasma or CO2)
- Turn on the coolant in and output pumps and set them to about 700 kPa
- Go down to atmospherics (or don’t) and configure your moderator mix of choice (usually keeping the default o2/plasma mix is fine)
- Fill up one of the empty canisters with CO2 (turn on the pure to CO2 and wrench down a yellow canister)
- Make sure air is going into distro (blue pipes) before leaving or you’ll be stuck in the airlock.
- Turn on the moderator pump at about 1500 to 2000 kPa (if you put it higher the reactor consumes a lot of gas very fast)
- put in three reactor FUEL rods (unlike the stormdrive the AGCNR uses Uranium fuel rods which means the reaction rate goes up the more there are)
- Set the control rod computer to 3K and put it back down to 1K when the power output is at 60%
Now that you’ve set up the engine, there’s very little you need to do. The reactor is designed to run for extended periods with little to no intervention. However, if you want to maximise your power output, you’ll need to put in a little more attention. *note: currently the reactor rods degrade very fast, because of this it is recommended to set a timer of about 45 minutes after starting up the reactor, at which points the rods will be about ready to be swapped out.
Moderator Types
Pumped into the reactor through the moderator line, Moderator Gasses can cause a variety of additional effects useful for managing heat and generating additional heat, but often come with their own set of risks. Here is a list of all available moderator gasses and their respective properties:
Fuel gasses
Oxygen: Power production multiplier. Allows you to run a low plasma, high oxy mix, and still get a lot of power.
Plasma: Power production gas. More plasma -> more power, but it enriches your fuel and makes the reactor much, much harder to control.
Tritium: Extremely efficient power production gas. Will cause chernobyl if used improperly.
Moderating gasses
N2: Helps you regain control of the reaction by increasing control rod effectiveness, will massively boost the radiation production of the reactor.
CO2: Super effective shutdown gas for runaway reactions but produces a massive amount of radiation!
Pluoxium: Same as N2, but without an increased radiation production.
Permeability Type (Coolant loop speed)
BZ: Increases your reactor's ability to transfer its heat to the coolant, thus letting you cool it down faster (but the coolant exiting will be much hotter)
Water Vapour: More efficient permeability modifier
Hyper Noblium: Extremely efficient permeability increase. (10x as efficient as bz)
Depletion type
Nitryl: When you need weapons grade plutonium yesterday. Causes your fuel to deplete much, much faster. Not a huge amount of use outside of sabotage.
What can go wrong
The AGCNR, like real nuclear reactors, is not perfect. Sometimes, the reaction can get out of control and feedback loops can form which can lead to nuclear disaster. Your first indication of something going wrong is that the station’s lights will start to flicker, if you see this happen, you’re going to need to start preparing. Once the reactor spools up to over 100% power, the meltdown will begin. The reactor will start flashing red and the entire ship will be alerted to the danger.
A meltdown is caused when the reactor gets too hot and overheats, this is the less lethal possibility, as blowouts are far more deadly. To counteract a meltdown, attempt to lower K down to 0. If K will not stabilise, flood the reactor with n2/co2(whatever’s on hand) to help you gain control over the reaction. Check the reactor for damage after bringing it back down to stable levels, as you may need to repair it.
Blowouts occur when the pressure inside of the coolant loop becomes too great, causing the gas to rupture the reactor itself and spew ash and radioactive material. To counteract a blowout, you need to act quickly. First check for simple sabotages, such as the exit line not being activated or the presence of fire in the coolant line. If the pressure is too great because of a fire or an otherwise excessive amount of gas inside the loop, it's time to either activate the release valve or close the coolant valve into the reactor. The release valve will dump all of the fuel inside the line out to space. Ensure you've dumped all of the fuel before refueling the reactor.
Maintenance
So you’ve started the reactor up, but your job isn’t done yet. ever. You’ve still got to prepare to shut the reactor down, change the rods, and make sure it doesn’t blow up halfway! The higher the K the more power and heat you produce, at 1k it should be stable, but if it’s not, adjust the decimal points.
Preparing to shutdown the reactor
First, you have to prepare your shutoff mix, to do this, run over to atmos and fill yourself two cans of co2, do this by turning on the co2 output to mixline, and mix line to the filling station thingy. Then, remember to setup atmos if they haven’t already and make sure the moderator is being made (follow the purple line). Now, you should run your cans back over to engineering and place them in the reactor chamber for when you need them.
Shutting down the reactor
One your timer to change the rods is up, go ahead and turn the reactor rod control to 0 K, this will cause the reactions in the reactor to stop, and slowly settle down, while this is happening, you want to insert the co2 cans you prepared into the direct moderator input, and set the moderator to 1000-1500 kpa, this will ration out your 9000kpa odd co2 for shutdown. Once the reactor power is under 20 percent, you are then able to remove the fuel rods. This will shut the reactor down for good, now you want to unwrench your co2 cans, refill them and bring them back again. You are now good to insert new rods into the reactor and start it up again. NOTE: Please keep spent rods away from normal rods, remember to reset the moderator input amount.
Repairing the reactor
If your reactor gets damaged, either from the pressure or heat, you can repair it with a welding tool and flex tape(damage control kit), this will repair the seals and make sure you don’t blow up next time you start it up.
Tips
- Be careful to not exhaust your plasma supply. It is recommended you don't max out the moderator input when youre running plasma + O2, or you're at a tangible risk of running out of those gasses from atmos.
- The reactor consumes moderator gasses very quickly, so keep this in mind before you use permeability gasses for riskier setups.
- You don’t need to shut down the reactor to do maintenance, you only need to bring it down to 20% power.
- Unlike the stormdrive, the temperature of the coolant matters! Don’t forget to set up your coolant loop.
- This engine synergises well with other atmos based engines, try hooking it up to a TEG for free power.
- You can cook food such as steak on the reactor's surface.
- If the reactor makes banging noises, it’s not being actively cooled with coolant, and is taking damage.
Sabotage
Sabotaging the Nuclear Reactor is incredibly easy to do, but can also be incredibly easy to fix depending on how much effort you put into your handiwork. Make sure there are no competent engineers nearby, roll up your sleeves, and let's get to work. You have a choice of starting either a meltdown or a blowout, with the latter being the deadliest but easiest to fix.
Meltdown:
- Flood reactor moderator line with plasma, they won't be able to mitigate the reaction with control rods.
- Shut off coolant entirely. Raise control rods.
- Swap all fuel out with spent fuel, as it's way stronger.
Blowout:
- Shut off exit valve for quick overpressure.
- Cause a pipefire in the coolant line (LETHAL).
- Tack heater onto coolant line (can also cause straight meltdown)