Difference between revisions of "User:Florb"
m (→Power Sources: moving Power Cells to Power distribution) |
m (→Power Distribution: added Power cells, still needs Bluespace ones) |
||
Line 148: | Line 148: | ||
APCs, or Automated Power Controllers, are found on the walls of the room they're powering or, more likely, in maintenance just outside the room. They can be used to toggle the room's equipment, lighting and environmental (a.k.a. ventilation) systems on and off. | APCs, or Automated Power Controllers, are found on the walls of the room they're powering or, more likely, in maintenance just outside the room. They can be used to toggle the room's equipment, lighting and environmental (a.k.a. ventilation) systems on and off. | ||
+ | == Power Cells == | ||
+ | |||
+ | Power cells are used to power devices smaller than the station such as APCs and cyborgs. Constructed with a protolathe, typical power cells come in several different flavors, in increasing capacity: the default power cell, the high-capacity power cell, the super-capacity power cell, or the hyper-capacity power cell. | ||
+ | |||
+ | There are also atypical cells such as a potato cell and a slime core cell. | ||
+ | |||
+ | {| class="wikitable" | ||
+ | |+ Power Capacity by Type of Cell | ||
+ | ! Type !! Capacity (W) | ||
+ | |+ | ||
+ | ! colspan = "2" style = "text-align:center;"| Typical Cells | ||
+ | |- | ||
+ | | Power Cell || 10000 | ||
+ | |- | ||
+ | | High-Capacity Power Cell || 15000 | ||
+ | |- | ||
+ | | Super-Capacity Power Cell || 20000 | ||
+ | |- | ||
+ | | Hyper-Capacity Power Cell || 30000 | ||
+ | |+ | ||
+ | ! colspan = "2" style = "text-align:center;"| Atypical Cells | ||
+ | |- | ||
+ | | Potato Cell || 300 | ||
+ | |- | ||
+ | | Slime Core Cell || 10000 | ||
+ | | | ||
= Concepts = | = Concepts = |
Revision as of 03:53, 28 February 2021
This page needs revising! The following page is out of date and/or needs to be revised. If the page's guide needs revision, see here for an example. The revision reason is: "This is ported from the Yogstation wiki. Needs a once-over for inaccuracies between servers, plus missing power values, plus revision for the additional SMES in engineering. Also needs Tesla info" |
Introduction
Understanding the intricacies of the power dynamic in the station is key to keeping the station in order. Many, especially the HoP, believe that the Captain is the seat of power on the station. This is untrue as having the Captain wired into the station's power grid provides minimal power at best.
The real source of power comes from Engineering because without Station Engineers to set up the power sources at the beginning of a shift, the station would cease to function normally and devolve into a degenerative society with no more power than a uncivilized horde of lowly Assistants, who, it should be noted, also provide even less power when wired directly to the grid.
Power Sources
The Stormdrive Engine
The Stormdrive uses input gases to output Power directly in the range of multiple Megawatts.
The Nuclear Reactor
Similar to the Stormdrive it produces Power if provided with Cooling and Moderator gases. Its output ranges in the Megawatts.
Supermatter Engine
The supermatter is a giant pile of exotic material capable of emitting both ionizing radiation and (flammable) gases. While the generation of these elements is normally rather low, the supermatter can be "activated" into releasing more by, well, most anything: even gasses can start the delamination process if they hold enough energy (heat, usually). You see where this is going? That's right, self-induced chain reactions. Your main job as an engineer will be to cool the supermatter down to prevent it from exploding (luckily a very easy job), while simultaneously exciting it to harvest radiation pulses. It's not an unforgiving engine, some would say it's even too stable to sabotage in a timely manner; read the Guide carefully and it will be hard to mess it up.
The Radiation emitted from the crystal can be collected in Radiation collectors, but the Power gained by this only ranges in the hundreds of Kilowatts.
Singularity Engine
The usable power emitted by a singularity takes the form of ionizing radiation pulses. These can interact with the mysterious substance called "plasma" so as to generate electricity. The more plasma available, and the stronger and more frequent the pulses, the more power is generated. The net power output can be measured directly by using a multitool on the collector's wire, checking the first SMES unit connected for available power, or by looking it up on a power monitoring console (though the latter will give skewed results if other power sources such as solars are connected).
Again an Engine reliant on Radiation, therefore relatively weak in comparison to the alternatives. This will also produce a couple of hundred Kilowatts.
Tesla Engine
This giant ball of incandescent energy regularly regurgitates power in the form of electric arcs. These arcs can be partially captured by tesla generators, and will generally flow along the most conductive/least resisting path. Metal structures are prime target for its strikes, and grounding rods are the safest there is, drawing arcs to themselves and subsequently dissipating them into the whole station. The latter are regularly used to direct lighting through tesla generators, and are best deployed between the engine and anything you hold dear.
As the Tesla produces Electricity directly with Telsa zaps striking the tesla coils it produces a lot more power. The tesla can make power in the range of a few Megawatts with a proper setup.
Solar Arrays
See Solars.
The solar arrays act as a secondary power source. They are composed of 60 panels per array and there are 4 arrays on the station. Each panel can produce 1.5 kW of power for a total of 90 kW per array.
The solar arrays only produce power when directly facing the local star. (The star is off-screen from the station and cannot be located by the player directly.) A solar tracking module can be wired into the solar array circuitry and, with the help of a solar power console, the solar panels can be made to automatically track the local star, which maximizes the power generation for each panel. However, as the station revolves around the star (which, again, is unseen by the player), the solar arrays often land in the shadow of the station which negatively affects solar power generation at the affected arrays. This effectively gives the solar arrays a solar day-night cycle, where it generates power during the day cycle and does not generate power during the night cycle. Because of the solar cycle, a given array will be able to generate power about 50% (estimated but unconfirmed) of the time, which can be translated to an average 45 kW per unit time, rather than the full 90 kW.
The solar panels themselves can be, and often are, broken by debris floating in space. Each broken panel reduces the total power generation of the array.
The solar arrays can typically power the entire station on their own, once the arrays are wired properly.
Maximum | Average | |
---|---|---|
per panel | per array | per array |
1500 W (1.5 kW) | 90000 W (90 kW) | 45000 W (45 kW) |
Gas Turbine Generator
See: Incinerator
The gas turbine generator is a tertiary power source that was recently installed in the incinerator. By utilizing the temperature differential between very hot air and very cold air, the turbine generator is able to create a nominal amount of electricity. The hot air is created by burning plasma and oxygen gas mixtures. The cold air is creating by passing air through cooling tubes located in space.
Although it's usually the last power source set up on the station, it's the only power source that can be accessed by Atmospherics. Also, they're the only ones who can turn on and mix the gas feed needed to sustain the generator without the use of gas canisters. The exact gas mixture for optimal power generation is unknown at this point, but some Engineers have reported values as high as 100 kW and in typical Engineer fashion forgot to write down their recipe. Be prepared to field questions from overprotective proactive AIs who notice plasma in the mixtank.
Portable Generators
Portable generators are failsafes when all other systems fail. They require fuel that is fed directly into the generator by hand. The type of fuel is dependent which type of generator is being used.
Portable generators can be upgraded using parts created by a protolathe. New ones can also be constructed with printable Boards once researched.
Type | Fuel | Power produced |
---|---|---|
P.A.C.M.A.N. Portable Generator | Plasma | 40 kW - 160 kW |
S.U.P.E.R.P.A.C.M.A.N. Portable Generator | Uranium | 120 kW - 480 kW |
M.R.S.P.A.C.M.A.N. Portable Generator | Diamond | 320 kW - 1.28 MWs |
One PACMAN generator is located in the SMES room, with plasma located in secure storage, and it is suggested to use it while setting up the singularity or tesla to prevent early release.
}
Power Distribution
Power Grid
To most people they're just wires that burn the shit out of you when you try to cut them without wearing insulated gloves. But really, the power grid is the electrical backbone of the station, powering everything from the emitters containing the singularity to the APC that controls the bathrooms in the locker room that you never go to. Also, it burns the shit out of you if you try to cut it without wearing insulated gloves.
SMES
A Superconducting Magnetic Energy Storage (SMES) Cell is the spess version of a giant rechargeable battery. The standard set-up for an SMES involves:
1. a wiring input from a power source, such as Solars or the Singularity Engine, or from the power grid itself, in the case of the Backups SMESs, and
2. a wiring output to the local power grid, or to a closed system like the AI or mining stations
SMES Properties
SMES have a modifiable storage capacity, dependent on the power cells installed in the SMES upon fabrication. All SMESs present at the beginning of a typical shift have a default capacity of 3.33 MW.
Power Cell | Capacity | |
---|---|---|
per cell installed | per 5 cells installed | |
Typical | ||
Standard | TBD | TBD |
High-Capacity | TBD | TBD |
Super-Capacity | TBD | TBD |
Hyper-Capacity | TBD | TBD |
Atypical | ||
Potato Cell | TBD | TBS |
Cyborg Cell | TBD | TBD |
Slime Core/SMES Cell | TBD | TBD |
SMES input (charging) and output levels can be modified using capacitors. All SMESs present at the beginning of a typical shift have a basic capacitor with default i/o levels of 200 kW.
Capacitor | Max Input Level | Max Output Level |
---|---|---|
Basic | 200000 W (200 kW) | 200000 W (200 kW) |
Advanced | 400000 W (400 kW) | 400000 W (400 kW) |
Super | 600000 W (600 kW) | 600000 W (600 kW) |
SMESs will only charge when the input power is equal or higher to the input levels specified on the SMES settings panel.
Likewise, SMESs will only output when the level of charge is above the output level specified on the SMES settings panel.
APCs
APCs, or Automated Power Controllers, are found on the walls of the room they're powering or, more likely, in maintenance just outside the room. They can be used to toggle the room's equipment, lighting and environmental (a.k.a. ventilation) systems on and off.
Power Cells
Power cells are used to power devices smaller than the station such as APCs and cyborgs. Constructed with a protolathe, typical power cells come in several different flavors, in increasing capacity: the default power cell, the high-capacity power cell, the super-capacity power cell, or the hyper-capacity power cell.
There are also atypical cells such as a potato cell and a slime core cell.
Type | Capacity (W) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Typical Cells | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Power Cell | 10000 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
High-Capacity Power Cell | 15000 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Super-Capacity Power Cell | 20000 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Hyper-Capacity Power Cell | 30000 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atypical Cells | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Potato Cell | 300 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Slime Core Cell | 10000 |
ConceptsSystem PowerSystem power is the amount of power available to the station at any given time. Power is made available through charged SMESs outputting power and through immediate power from power sources wired directly to the grid. (System Power) = (Total Output Power of SMESs) + (Power Sources Wired to the Grid)
Power QueueTo maintain a stable source of power for station equipment, the station power grid follows a power queue where an electrical component with higher rank on the queue has its power draw from the grid evaluated before an electrical component with a lower priority. APCs are typically the lowest priority since they only draw power, while the power sources on the station are the highest priority since they only produce power.
Power Output and the Power QueueThe most visible effect of the power queue is that if there is not enough output power available on the grid because a component with higher rank is requesting it, then a lower rank component will not charge. For example, if the Backup SMESs are set to input 200 kW each from the grid and the APCs draw 150 kW, but the grid only provides 250 kW total, then the second Backup SMES will not charge and around two out of three APCs will go unpowered as well. SMES Charging and the Power QueueSimilarly, if a higher rank component has a high enough output level to handle the station's power draw, then the station will draw all of its power from the higher rank component instead of splitting the draw with a lower rank component. This phenomenon is seen often when the singlo is set up. An unaware Engineer will purposefully set all three Singlo SMESs to output at a very high value, say 100 kW, or 300 kW, thinking that this will be more than enough to power the station. While this is technically correct, it isn't advised since it slows down the time it takes until all SMESs are completely full. An example is the best way to see this. The total power draw on the station is usually near 150 kW. This means the station will draw 100 kW from Singlo SMES #1, 50 kW from Singlo SMES #2, and 0 kW from Singlo SMES #3, resulting in different charging rates of the SMESs. Since SMESs have a capacity of 3,333,333 W (3.33 MW) and assuming an input level of 200 kW, it should take 33.3 cycles before all the SMESs are completely charged (9.99 MW total power stored).
A better way is to set output levels on Singlo SMESs #1 and #2 to a third of the total power draw of the station (here, 50 kW), while allowing the remainder (also, 50 kW) to draw from Singlo SMES #3, which would be set higher than that to account for power fluctuations. For the same case where the total draw was 150 kW, we would set SMES #1 and #2 to 50 kW and SMES #3 to something higher like 200 kW. This would have all three SMESs charged in 22.2 cycles -- 33% faster than the situation above.
ENGINEERING WHY ARE WE LOSING POWERSooner or later, on every barely functional space station, the power will go out. This is where you - YES, YOU, YOU LAZY FUCK - come in and call out to recall that shuttle because you can fix it! Power can go out for many reasons. Your first port of call should be the Power Monitoring console in engineering, assuming it still exists. Then, ask yourself what's going on:
Now that you know what's wrong with power, it's your job to fix it! If the singularity is about to be fucked, TURN OFF THE PA IMMEDIATELY (it may be worth asking the AI) and wire solars, if they aren't already wired. It might also be necessary to replace equipment. There is a PACMAN located in the SMES room and a spare SMES unit located in Electrical Maintenance, both of which no one ever remembers. You could also rebuild everything. The tools to build a new SMES are located in Tech Storage, and cargo can order new solar equipment and even a new goddamn PA! ...Assuming they haven't already done so and pointed it your way, that is. |